/* * cifra - embedded cryptography library * Written in 2014 by Joseph Birr-Pixton * * To the extent possible under law, the author(s) have dedicated all * copyright and related and neighboring rights to this software to the * public domain worldwide. This software is distributed without any * warranty. * * You should have received a copy of the CC0 Public Domain Dedication * along with this software. If not, see * . */ #include #include "sha2.h" #include "blockwise.h" #include "bitops.h" #include "handy.h" #include "tassert.h" static const uint64_t K[80] = { UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd), UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc), UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019), UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118), UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe), UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2), UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1), UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694), UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3), UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65), UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483), UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5), UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210), UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4), UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725), UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70), UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926), UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df), UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8), UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b), UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001), UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30), UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910), UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8), UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53), UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8), UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb), UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3), UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60), UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec), UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9), UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b), UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207), UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178), UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6), UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b), UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493), UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c), UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a), UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817) }; # define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z))) # define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) # define BSIG0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39)) # define BSIG1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41)) # define SSIG0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7)) # define SSIG1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6)) void cf_sha512_init(cf_sha512_context *ctx) { memset(ctx, 0, sizeof *ctx); ctx->H[0] = UINT64_C(0x6a09e667f3bcc908); ctx->H[1] = UINT64_C(0xbb67ae8584caa73b); ctx->H[2] = UINT64_C(0x3c6ef372fe94f82b); ctx->H[3] = UINT64_C(0xa54ff53a5f1d36f1); ctx->H[4] = UINT64_C(0x510e527fade682d1); ctx->H[5] = UINT64_C(0x9b05688c2b3e6c1f); ctx->H[6] = UINT64_C(0x1f83d9abfb41bd6b); ctx->H[7] = UINT64_C(0x5be0cd19137e2179); } void cf_sha384_init(cf_sha512_context *ctx) { memset(ctx, 0, sizeof *ctx); ctx->H[0] = UINT64_C(0xcbbb9d5dc1059ed8); ctx->H[1] = UINT64_C(0x629a292a367cd507); ctx->H[2] = UINT64_C(0x9159015a3070dd17); ctx->H[3] = UINT64_C(0x152fecd8f70e5939); ctx->H[4] = UINT64_C(0x67332667ffc00b31); ctx->H[5] = UINT64_C(0x8eb44a8768581511); ctx->H[6] = UINT64_C(0xdb0c2e0d64f98fa7); ctx->H[7] = UINT64_C(0x47b5481dbefa4fa4); } static void sha512_update_block(void *vctx, const uint8_t *inp) { cf_sha512_context *ctx = vctx; uint64_t W[16]; uint64_t a = ctx->H[0], b = ctx->H[1], c = ctx->H[2], d = ctx->H[3], e = ctx->H[4], f = ctx->H[5], g = ctx->H[6], h = ctx->H[7], Wt; size_t t; for (t = 0; t < 80; t++) { if (t < 16) { W[t] = Wt = read64_be(inp); inp += 8; } else { Wt = SSIG1(W[(t - 2) % 16]) + W[(t - 7) % 16] + SSIG0(W[(t - 15) % 16]) + W[(t - 16) % 16]; W[t % 16] = Wt; } uint64_t T1 = h + BSIG1(e) + CH(e, f, g) + K[t] + Wt; uint64_t T2 = BSIG0(a) + MAJ(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } ctx->H[0] += a; ctx->H[1] += b; ctx->H[2] += c; ctx->H[3] += d; ctx->H[4] += e; ctx->H[5] += f; ctx->H[6] += g; ctx->H[7] += h; ctx->blocks++; } void cf_sha512_update(cf_sha512_context *ctx, const void *data, size_t nbytes) { cf_blockwise_accumulate(ctx->partial, &ctx->npartial, sizeof ctx->partial, data, nbytes, sha512_update_block, ctx); } void cf_sha384_update(cf_sha512_context *ctx, const void *data, size_t nbytes) { cf_sha512_update(ctx, data, nbytes); } void cf_sha512_digest(const cf_sha512_context *ctx, uint8_t hash[CF_SHA512_HASHSZ]) { /* We copy the context, so the finalisation doesn't effect the caller's * context. This means the caller can do: * * x = init() * x.update('hello') * h1 = x.digest() * x.update(' world') * h2 = x.digest() * * to get h1 = H('hello') and h2 = H('hello world') * * This wouldn't work if we applied MD-padding to *ctx. */ cf_sha512_context ours = *ctx; cf_sha512_digest_final(&ours, hash); } void cf_sha512_digest_final(cf_sha512_context *ctx, uint8_t hash[CF_SHA512_HASHSZ]) { uint64_t digested_bytes = ctx->blocks; digested_bytes = digested_bytes * CF_SHA512_BLOCKSZ + ctx->npartial; uint64_t digested_bits = digested_bytes * 8; size_t padbytes = CF_SHA512_BLOCKSZ - ((digested_bytes + 16) % CF_SHA512_BLOCKSZ); /* Hash 0x80 00 ... block first. */ cf_blockwise_acc_pad(ctx->partial, &ctx->npartial, sizeof ctx->partial, 0x80, 0x00, 0x00, padbytes, sha512_update_block, ctx); /* Now hash length (this is 128 bits long). */ uint8_t buf[8]; write64_be(0, buf); cf_sha512_update(ctx, buf, 8); write64_be(digested_bits, buf); cf_sha512_update(ctx, buf, 8); /* We ought to have got our padding calculation right! */ assert(ctx->npartial == 0); write64_be(ctx->H[0], hash + 0); write64_be(ctx->H[1], hash + 8); write64_be(ctx->H[2], hash + 16); write64_be(ctx->H[3], hash + 24); write64_be(ctx->H[4], hash + 32); write64_be(ctx->H[5], hash + 40); write64_be(ctx->H[6], hash + 48); write64_be(ctx->H[7], hash + 56); memset(ctx, 0, sizeof *ctx); } void cf_sha384_digest(const cf_sha512_context *ctx, uint8_t hash[CF_SHA384_HASHSZ]) { uint8_t full[CF_SHA512_HASHSZ]; cf_sha512_digest(ctx, full); memcpy(hash, full, CF_SHA384_HASHSZ); } void cf_sha384_digest_final(cf_sha512_context *ctx, uint8_t hash[CF_SHA384_HASHSZ]) { uint8_t full[CF_SHA512_HASHSZ]; cf_sha512_digest_final(ctx, full); memcpy(hash, full, CF_SHA384_HASHSZ); } const cf_chash cf_sha384 = { .hashsz = CF_SHA384_HASHSZ, .blocksz = CF_SHA384_BLOCKSZ, .init = (cf_chash_init) cf_sha384_init, .update = (cf_chash_update) cf_sha384_update, .digest = (cf_chash_digest) cf_sha384_digest }; const cf_chash cf_sha512 = { .hashsz = CF_SHA512_HASHSZ, .blocksz = CF_SHA512_BLOCKSZ, .init = (cf_chash_init) cf_sha512_init, .update = (cf_chash_update) cf_sha512_update, .digest = (cf_chash_digest) cf_sha512_digest };