sha512.c 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249
  1. /*
  2. * cifra - embedded cryptography library
  3. * Written in 2014 by Joseph Birr-Pixton <jpixton@gmail.com>
  4. *
  5. * To the extent possible under law, the author(s) have dedicated all
  6. * copyright and related and neighboring rights to this software to the
  7. * public domain worldwide. This software is distributed without any
  8. * warranty.
  9. *
  10. * You should have received a copy of the CC0 Public Domain Dedication
  11. * along with this software. If not, see
  12. * <http://creativecommons.org/publicdomain/zero/1.0/>.
  13. */
  14. #include <string.h>
  15. #include "sha2.h"
  16. #include "blockwise.h"
  17. #include "bitops.h"
  18. #include "handy.h"
  19. #include "tassert.h"
  20. static const uint64_t K[80] = {
  21. UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
  22. UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
  23. UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
  24. UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
  25. UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
  26. UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
  27. UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
  28. UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
  29. UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
  30. UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
  31. UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
  32. UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
  33. UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
  34. UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
  35. UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
  36. UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
  37. UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
  38. UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
  39. UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
  40. UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
  41. UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
  42. UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
  43. UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
  44. UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
  45. UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
  46. UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
  47. UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
  48. UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
  49. UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
  50. UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
  51. UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
  52. UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
  53. UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
  54. UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
  55. UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
  56. UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
  57. UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
  58. UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
  59. UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
  60. UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817)
  61. };
  62. # define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z)))
  63. # define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  64. # define BSIG0(x) (rotr64((x), 28) ^ rotr64((x), 34) ^ rotr64((x), 39))
  65. # define BSIG1(x) (rotr64((x), 14) ^ rotr64((x), 18) ^ rotr64((x), 41))
  66. # define SSIG0(x) (rotr64((x), 1) ^ rotr64((x), 8) ^ ((x) >> 7))
  67. # define SSIG1(x) (rotr64((x), 19) ^ rotr64((x), 61) ^ ((x) >> 6))
  68. void cf_sha512_init(cf_sha512_context *ctx)
  69. {
  70. memset(ctx, 0, sizeof *ctx);
  71. ctx->H[0] = UINT64_C(0x6a09e667f3bcc908);
  72. ctx->H[1] = UINT64_C(0xbb67ae8584caa73b);
  73. ctx->H[2] = UINT64_C(0x3c6ef372fe94f82b);
  74. ctx->H[3] = UINT64_C(0xa54ff53a5f1d36f1);
  75. ctx->H[4] = UINT64_C(0x510e527fade682d1);
  76. ctx->H[5] = UINT64_C(0x9b05688c2b3e6c1f);
  77. ctx->H[6] = UINT64_C(0x1f83d9abfb41bd6b);
  78. ctx->H[7] = UINT64_C(0x5be0cd19137e2179);
  79. }
  80. void cf_sha384_init(cf_sha512_context *ctx)
  81. {
  82. memset(ctx, 0, sizeof *ctx);
  83. ctx->H[0] = UINT64_C(0xcbbb9d5dc1059ed8);
  84. ctx->H[1] = UINT64_C(0x629a292a367cd507);
  85. ctx->H[2] = UINT64_C(0x9159015a3070dd17);
  86. ctx->H[3] = UINT64_C(0x152fecd8f70e5939);
  87. ctx->H[4] = UINT64_C(0x67332667ffc00b31);
  88. ctx->H[5] = UINT64_C(0x8eb44a8768581511);
  89. ctx->H[6] = UINT64_C(0xdb0c2e0d64f98fa7);
  90. ctx->H[7] = UINT64_C(0x47b5481dbefa4fa4);
  91. }
  92. static void sha512_update_block(void *vctx, const uint8_t *inp)
  93. {
  94. cf_sha512_context *ctx = vctx;
  95. uint64_t W[16];
  96. uint64_t a = ctx->H[0],
  97. b = ctx->H[1],
  98. c = ctx->H[2],
  99. d = ctx->H[3],
  100. e = ctx->H[4],
  101. f = ctx->H[5],
  102. g = ctx->H[6],
  103. h = ctx->H[7],
  104. Wt;
  105. size_t t;
  106. for (t = 0; t < 80; t++)
  107. {
  108. if (t < 16)
  109. {
  110. W[t] = Wt = read64_be(inp);
  111. inp += 8;
  112. } else {
  113. Wt = SSIG1(W[(t - 2) % 16]) +
  114. W[(t - 7) % 16] +
  115. SSIG0(W[(t - 15) % 16]) +
  116. W[(t - 16) % 16];
  117. W[t % 16] = Wt;
  118. }
  119. uint64_t T1 = h + BSIG1(e) + CH(e, f, g) + K[t] + Wt;
  120. uint64_t T2 = BSIG0(a) + MAJ(a, b, c);
  121. h = g;
  122. g = f;
  123. f = e;
  124. e = d + T1;
  125. d = c;
  126. c = b;
  127. b = a;
  128. a = T1 + T2;
  129. }
  130. ctx->H[0] += a;
  131. ctx->H[1] += b;
  132. ctx->H[2] += c;
  133. ctx->H[3] += d;
  134. ctx->H[4] += e;
  135. ctx->H[5] += f;
  136. ctx->H[6] += g;
  137. ctx->H[7] += h;
  138. ctx->blocks++;
  139. }
  140. void cf_sha512_update(cf_sha512_context *ctx, const void *data, size_t nbytes)
  141. {
  142. cf_blockwise_accumulate(ctx->partial, &ctx->npartial, sizeof ctx->partial,
  143. data, nbytes,
  144. sha512_update_block, ctx);
  145. }
  146. void cf_sha384_update(cf_sha512_context *ctx, const void *data, size_t nbytes)
  147. {
  148. cf_sha512_update(ctx, data, nbytes);
  149. }
  150. void cf_sha512_digest(const cf_sha512_context *ctx, uint8_t hash[CF_SHA512_HASHSZ])
  151. {
  152. /* We copy the context, so the finalisation doesn't effect the caller's
  153. * context. This means the caller can do:
  154. *
  155. * x = init()
  156. * x.update('hello')
  157. * h1 = x.digest()
  158. * x.update(' world')
  159. * h2 = x.digest()
  160. *
  161. * to get h1 = H('hello') and h2 = H('hello world')
  162. *
  163. * This wouldn't work if we applied MD-padding to *ctx.
  164. */
  165. cf_sha512_context ours = *ctx;
  166. cf_sha512_digest_final(&ours, hash);
  167. }
  168. void cf_sha512_digest_final(cf_sha512_context *ctx, uint8_t hash[CF_SHA512_HASHSZ])
  169. {
  170. uint64_t digested_bytes = ctx->blocks;
  171. digested_bytes = digested_bytes * CF_SHA512_BLOCKSZ + ctx->npartial;
  172. uint64_t digested_bits = digested_bytes * 8;
  173. size_t padbytes = CF_SHA512_BLOCKSZ - ((digested_bytes + 16) % CF_SHA512_BLOCKSZ);
  174. /* Hash 0x80 00 ... block first. */
  175. cf_blockwise_acc_pad(ctx->partial, &ctx->npartial, sizeof ctx->partial,
  176. 0x80, 0x00, 0x00, padbytes,
  177. sha512_update_block, ctx);
  178. /* Now hash length (this is 128 bits long). */
  179. uint8_t buf[8];
  180. write64_be(0, buf);
  181. cf_sha512_update(ctx, buf, 8);
  182. write64_be(digested_bits, buf);
  183. cf_sha512_update(ctx, buf, 8);
  184. /* We ought to have got our padding calculation right! */
  185. assert(ctx->npartial == 0);
  186. write64_be(ctx->H[0], hash + 0);
  187. write64_be(ctx->H[1], hash + 8);
  188. write64_be(ctx->H[2], hash + 16);
  189. write64_be(ctx->H[3], hash + 24);
  190. write64_be(ctx->H[4], hash + 32);
  191. write64_be(ctx->H[5], hash + 40);
  192. write64_be(ctx->H[6], hash + 48);
  193. write64_be(ctx->H[7], hash + 56);
  194. memset(ctx, 0, sizeof *ctx);
  195. }
  196. void cf_sha384_digest(const cf_sha512_context *ctx, uint8_t hash[CF_SHA384_HASHSZ])
  197. {
  198. uint8_t full[CF_SHA512_HASHSZ];
  199. cf_sha512_digest(ctx, full);
  200. memcpy(hash, full, CF_SHA384_HASHSZ);
  201. }
  202. void cf_sha384_digest_final(cf_sha512_context *ctx, uint8_t hash[CF_SHA384_HASHSZ])
  203. {
  204. uint8_t full[CF_SHA512_HASHSZ];
  205. cf_sha512_digest_final(ctx, full);
  206. memcpy(hash, full, CF_SHA384_HASHSZ);
  207. }
  208. const cf_chash cf_sha384 = {
  209. .hashsz = CF_SHA384_HASHSZ,
  210. .blocksz = CF_SHA384_BLOCKSZ,
  211. .init = (cf_chash_init) cf_sha384_init,
  212. .update = (cf_chash_update) cf_sha384_update,
  213. .digest = (cf_chash_digest) cf_sha384_digest
  214. };
  215. const cf_chash cf_sha512 = {
  216. .hashsz = CF_SHA512_HASHSZ,
  217. .blocksz = CF_SHA512_BLOCKSZ,
  218. .init = (cf_chash_init) cf_sha512_init,
  219. .update = (cf_chash_update) cf_sha512_update,
  220. .digest = (cf_chash_digest) cf_sha512_digest
  221. };