kmath.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456
  1. #include <stdlib.h>
  2. #include <string.h>
  3. #include <math.h>
  4. #include "kmath.h"
  5. /**************************************
  6. *** Pseudo-random number generator ***
  7. **************************************/
  8. /*
  9. 64-bit Mersenne Twister pseudorandom number generator. Adapted from:
  10. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/mt19937-64.c
  11. which was written by Takuji Nishimura and Makoto Matsumoto and released
  12. under the 3-clause BSD license.
  13. */
  14. #define KR_NN 312
  15. #define KR_MM 156
  16. #define KR_UM 0xFFFFFFFF80000000ULL /* Most significant 33 bits */
  17. #define KR_LM 0x7FFFFFFFULL /* Least significant 31 bits */
  18. struct _krand_t {
  19. int mti;
  20. krint64_t mt[KR_NN];
  21. };
  22. static void kr_srand0(krint64_t seed, krand_t *kr)
  23. {
  24. kr->mt[0] = seed;
  25. for (kr->mti = 1; kr->mti < KR_NN; ++kr->mti)
  26. kr->mt[kr->mti] = 6364136223846793005ULL * (kr->mt[kr->mti - 1] ^ (kr->mt[kr->mti - 1] >> 62)) + kr->mti;
  27. }
  28. krand_t *kr_srand(krint64_t seed)
  29. {
  30. krand_t *kr;
  31. kr = malloc(sizeof(krand_t));
  32. kr_srand0(seed, kr);
  33. return kr;
  34. }
  35. krint64_t kr_rand(krand_t *kr)
  36. {
  37. krint64_t x;
  38. static const krint64_t mag01[2] = { 0, 0xB5026F5AA96619E9ULL };
  39. if (kr->mti >= KR_NN) {
  40. int i;
  41. if (kr->mti == KR_NN + 1) kr_srand0(5489ULL, kr);
  42. for (i = 0; i < KR_NN - KR_MM; ++i) {
  43. x = (kr->mt[i] & KR_UM) | (kr->mt[i+1] & KR_LM);
  44. kr->mt[i] = kr->mt[i + KR_MM] ^ (x>>1) ^ mag01[(int)(x&1)];
  45. }
  46. for (; i < KR_NN - 1; ++i) {
  47. x = (kr->mt[i] & KR_UM) | (kr->mt[i+1] & KR_LM);
  48. kr->mt[i] = kr->mt[i + (KR_MM - KR_NN)] ^ (x>>1) ^ mag01[(int)(x&1)];
  49. }
  50. x = (kr->mt[KR_NN - 1] & KR_UM) | (kr->mt[0] & KR_LM);
  51. kr->mt[KR_NN - 1] = kr->mt[KR_MM - 1] ^ (x>>1) ^ mag01[(int)(x&1)];
  52. kr->mti = 0;
  53. }
  54. x = kr->mt[kr->mti++];
  55. x ^= (x >> 29) & 0x5555555555555555ULL;
  56. x ^= (x << 17) & 0x71D67FFFEDA60000ULL;
  57. x ^= (x << 37) & 0xFFF7EEE000000000ULL;
  58. x ^= (x >> 43);
  59. return x;
  60. }
  61. #ifdef _KR_MAIN
  62. int main(int argc, char *argv[])
  63. {
  64. long i, N = 200000000;
  65. krand_t *kr;
  66. if (argc > 1) N = atol(argv[1]);
  67. kr = kr_srand(11);
  68. for (i = 0; i < N; ++i) kr_rand(kr);
  69. // for (i = 0; i < N; ++i) lrand48();
  70. free(kr);
  71. return 0;
  72. }
  73. #endif
  74. /******************************
  75. *** Non-linear programming ***
  76. ******************************/
  77. /* Hooke-Jeeves algorithm for nonlinear minimization
  78. Based on the pseudocodes by Bell and Pike (CACM 9(9):684-685), and
  79. the revision by Tomlin and Smith (CACM 12(11):637-638). Both of the
  80. papers are comments on Kaupe's Algorithm 178 "Direct Search" (ACM
  81. 6(6):313-314). The original algorithm was designed by Hooke and
  82. Jeeves (ACM 8:212-229). This program is further revised according to
  83. Johnson's implementation at Netlib (opt/hooke.c).
  84. Hooke-Jeeves algorithm is very simple and it works quite well on a
  85. few examples. However, it might fail to converge due to its heuristic
  86. nature. A possible improvement, as is suggested by Johnson, may be to
  87. choose a small r at the beginning to quickly approach to the minimum
  88. and a large r at later step to hit the minimum.
  89. */
  90. static double __kmin_hj_aux(kmin_f func, int n, double *x1, void *data, double fx1, double *dx, int *n_calls)
  91. {
  92. int k, j = *n_calls;
  93. double ftmp;
  94. for (k = 0; k != n; ++k) {
  95. x1[k] += dx[k];
  96. ftmp = func(n, x1, data); ++j;
  97. if (ftmp < fx1) fx1 = ftmp;
  98. else { /* search the opposite direction */
  99. dx[k] = 0.0 - dx[k];
  100. x1[k] += dx[k] + dx[k];
  101. ftmp = func(n, x1, data); ++j;
  102. if (ftmp < fx1) fx1 = ftmp;
  103. else x1[k] -= dx[k]; /* back to the original x[k] */
  104. }
  105. }
  106. *n_calls = j;
  107. return fx1; /* here: fx1=f(n,x1) */
  108. }
  109. double kmin_hj(kmin_f func, int n, double *x, void *data, double r, double eps, int max_calls)
  110. {
  111. double fx, fx1, *x1, *dx, radius;
  112. int k, n_calls = 0;
  113. x1 = (double*)calloc(n, sizeof(double));
  114. dx = (double*)calloc(n, sizeof(double));
  115. for (k = 0; k != n; ++k) { /* initial directions, based on MGJ */
  116. dx[k] = fabs(x[k]) * r;
  117. if (dx[k] == 0) dx[k] = r;
  118. }
  119. radius = r;
  120. fx1 = fx = func(n, x, data); ++n_calls;
  121. for (;;) {
  122. memcpy(x1, x, n * sizeof(double)); /* x1 = x */
  123. fx1 = __kmin_hj_aux(func, n, x1, data, fx, dx, &n_calls);
  124. while (fx1 < fx) {
  125. for (k = 0; k != n; ++k) {
  126. double t = x[k];
  127. dx[k] = x1[k] > x[k]? fabs(dx[k]) : 0.0 - fabs(dx[k]);
  128. x[k] = x1[k];
  129. x1[k] = x1[k] + x1[k] - t;
  130. }
  131. fx = fx1;
  132. if (n_calls >= max_calls) break;
  133. fx1 = func(n, x1, data); ++n_calls;
  134. fx1 = __kmin_hj_aux(func, n, x1, data, fx1, dx, &n_calls);
  135. if (fx1 >= fx) break;
  136. for (k = 0; k != n; ++k)
  137. if (fabs(x1[k] - x[k]) > .5 * fabs(dx[k])) break;
  138. if (k == n) break;
  139. }
  140. if (radius >= eps) {
  141. if (n_calls >= max_calls) break;
  142. radius *= r;
  143. for (k = 0; k != n; ++k) dx[k] *= r;
  144. } else break; /* converge */
  145. }
  146. free(x1); free(dx);
  147. return fx1;
  148. }
  149. // I copied this function somewhere several years ago with some of my modifications, but I forgot the source.
  150. double kmin_brent(kmin1_f func, double a, double b, void *data, double tol, double *xmin)
  151. {
  152. double bound, u, r, q, fu, tmp, fa, fb, fc, c;
  153. const double gold1 = 1.6180339887;
  154. const double gold2 = 0.3819660113;
  155. const double tiny = 1e-20;
  156. const int max_iter = 100;
  157. double e, d, w, v, mid, tol1, tol2, p, eold, fv, fw;
  158. int iter;
  159. fa = func(a, data); fb = func(b, data);
  160. if (fb > fa) { // swap, such that f(a) > f(b)
  161. tmp = a; a = b; b = tmp;
  162. tmp = fa; fa = fb; fb = tmp;
  163. }
  164. c = b + gold1 * (b - a), fc = func(c, data); // golden section extrapolation
  165. while (fb > fc) {
  166. bound = b + 100.0 * (c - b); // the farthest point where we want to go
  167. r = (b - a) * (fb - fc);
  168. q = (b - c) * (fb - fa);
  169. if (fabs(q - r) < tiny) { // avoid 0 denominator
  170. tmp = q > r? tiny : 0.0 - tiny;
  171. } else tmp = q - r;
  172. u = b - ((b - c) * q - (b - a) * r) / (2.0 * tmp); // u is the parabolic extrapolation point
  173. if ((b > u && u > c) || (b < u && u < c)) { // u lies between b and c
  174. fu = func(u, data);
  175. if (fu < fc) { // (b,u,c) bracket the minimum
  176. a = b; b = u; fa = fb; fb = fu;
  177. break;
  178. } else if (fu > fb) { // (a,b,u) bracket the minimum
  179. c = u; fc = fu;
  180. break;
  181. }
  182. u = c + gold1 * (c - b); fu = func(u, data); // golden section extrapolation
  183. } else if ((c > u && u > bound) || (c < u && u < bound)) { // u lies between c and bound
  184. fu = func(u, data);
  185. if (fu < fc) { // fb > fc > fu
  186. b = c; c = u; u = c + gold1 * (c - b);
  187. fb = fc; fc = fu; fu = func(u, data);
  188. } else { // (b,c,u) bracket the minimum
  189. a = b; b = c; c = u;
  190. fa = fb; fb = fc; fc = fu;
  191. break;
  192. }
  193. } else if ((u > bound && bound > c) || (u < bound && bound < c)) { // u goes beyond the bound
  194. u = bound; fu = func(u, data);
  195. } else { // u goes the other way around, use golden section extrapolation
  196. u = c + gold1 * (c - b); fu = func(u, data);
  197. }
  198. a = b; b = c; c = u;
  199. fa = fb; fb = fc; fc = fu;
  200. }
  201. if (a > c) u = a, a = c, c = u; // swap
  202. // now, a<b<c, fa>fb and fb<fc, move on to Brent's algorithm
  203. e = d = 0.0;
  204. w = v = b; fv = fw = fb;
  205. for (iter = 0; iter != max_iter; ++iter) {
  206. mid = 0.5 * (a + c);
  207. tol2 = 2.0 * (tol1 = tol * fabs(b) + tiny);
  208. if (fabs(b - mid) <= (tol2 - 0.5 * (c - a))) {
  209. *xmin = b; return fb; // found
  210. }
  211. if (fabs(e) > tol1) {
  212. // related to parabolic interpolation
  213. r = (b - w) * (fb - fv);
  214. q = (b - v) * (fb - fw);
  215. p = (b - v) * q - (b - w) * r;
  216. q = 2.0 * (q - r);
  217. if (q > 0.0) p = 0.0 - p;
  218. else q = 0.0 - q;
  219. eold = e; e = d;
  220. if (fabs(p) >= fabs(0.5 * q * eold) || p <= q * (a - b) || p >= q * (c - b)) {
  221. d = gold2 * (e = (b >= mid ? a - b : c - b));
  222. } else {
  223. d = p / q; u = b + d; // actual parabolic interpolation happens here
  224. if (u - a < tol2 || c - u < tol2)
  225. d = (mid > b)? tol1 : 0.0 - tol1;
  226. }
  227. } else d = gold2 * (e = (b >= mid ? a - b : c - b)); // golden section interpolation
  228. u = fabs(d) >= tol1 ? b + d : b + (d > 0.0? tol1 : -tol1);
  229. fu = func(u, data);
  230. if (fu <= fb) { // u is the minimum point so far
  231. if (u >= b) a = b;
  232. else c = b;
  233. v = w; w = b; b = u; fv = fw; fw = fb; fb = fu;
  234. } else { // adjust (a,c) and (u,v,w)
  235. if (u < b) a = u;
  236. else c = u;
  237. if (fu <= fw || w == b) {
  238. v = w; w = u;
  239. fv = fw; fw = fu;
  240. } else if (fu <= fv || v == b || v == w) {
  241. v = u; fv = fu;
  242. }
  243. }
  244. }
  245. *xmin = b;
  246. return fb;
  247. }
  248. /*************************
  249. *** Special functions ***
  250. *************************/
  251. /* Log gamma function
  252. * \log{\Gamma(z)}
  253. * AS245, 2nd algorithm, http://lib.stat.cmu.edu/apstat/245
  254. */
  255. double kf_lgamma(double z)
  256. {
  257. double x = 0;
  258. x += 0.1659470187408462e-06 / (z+7);
  259. x += 0.9934937113930748e-05 / (z+6);
  260. x -= 0.1385710331296526 / (z+5);
  261. x += 12.50734324009056 / (z+4);
  262. x -= 176.6150291498386 / (z+3);
  263. x += 771.3234287757674 / (z+2);
  264. x -= 1259.139216722289 / (z+1);
  265. x += 676.5203681218835 / z;
  266. x += 0.9999999999995183;
  267. return log(x) - 5.58106146679532777 - z + (z-0.5) * log(z+6.5);
  268. }
  269. /* complementary error function
  270. * \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt
  271. * AS66, 2nd algorithm, http://lib.stat.cmu.edu/apstat/66
  272. */
  273. double kf_erfc(double x)
  274. {
  275. const double p0 = 220.2068679123761;
  276. const double p1 = 221.2135961699311;
  277. const double p2 = 112.0792914978709;
  278. const double p3 = 33.912866078383;
  279. const double p4 = 6.37396220353165;
  280. const double p5 = .7003830644436881;
  281. const double p6 = .03526249659989109;
  282. const double q0 = 440.4137358247522;
  283. const double q1 = 793.8265125199484;
  284. const double q2 = 637.3336333788311;
  285. const double q3 = 296.5642487796737;
  286. const double q4 = 86.78073220294608;
  287. const double q5 = 16.06417757920695;
  288. const double q6 = 1.755667163182642;
  289. const double q7 = .08838834764831844;
  290. double expntl, z, p;
  291. z = fabs(x) * M_SQRT2;
  292. if (z > 37.) return x > 0.? 0. : 2.;
  293. expntl = exp(z * z * - .5);
  294. if (z < 10. / M_SQRT2) // for small z
  295. p = expntl * ((((((p6 * z + p5) * z + p4) * z + p3) * z + p2) * z + p1) * z + p0)
  296. / (((((((q7 * z + q6) * z + q5) * z + q4) * z + q3) * z + q2) * z + q1) * z + q0);
  297. else p = expntl / 2.506628274631001 / (z + 1. / (z + 2. / (z + 3. / (z + 4. / (z + .65)))));
  298. return x > 0.? 2. * p : 2. * (1. - p);
  299. }
  300. /* The following computes regularized incomplete gamma functions.
  301. * Formulas are taken from Wiki, with additional input from Numerical
  302. * Recipes in C (for modified Lentz's algorithm) and AS245
  303. * (http://lib.stat.cmu.edu/apstat/245).
  304. *
  305. * A good online calculator is available at:
  306. *
  307. * http://www.danielsoper.com/statcalc/calc23.aspx
  308. *
  309. * It calculates upper incomplete gamma function, which equals
  310. * kf_gammaq(s,z)*tgamma(s).
  311. */
  312. #define KF_GAMMA_EPS 1e-14
  313. #define KF_TINY 1e-290
  314. // regularized lower incomplete gamma function, by series expansion
  315. static double _kf_gammap(double s, double z)
  316. {
  317. double sum, x;
  318. int k;
  319. for (k = 1, sum = x = 1.; k < 100; ++k) {
  320. sum += (x *= z / (s + k));
  321. if (x / sum < KF_GAMMA_EPS) break;
  322. }
  323. return exp(s * log(z) - z - kf_lgamma(s + 1.) + log(sum));
  324. }
  325. // regularized upper incomplete gamma function, by continued fraction
  326. static double _kf_gammaq(double s, double z)
  327. {
  328. int j;
  329. double C, D, f;
  330. f = 1. + z - s; C = f; D = 0.;
  331. // Modified Lentz's algorithm for computing continued fraction
  332. // See Numerical Recipes in C, 2nd edition, section 5.2
  333. for (j = 1; j < 100; ++j) {
  334. double a = j * (s - j), b = (j<<1) + 1 + z - s, d;
  335. D = b + a * D;
  336. if (D < KF_TINY) D = KF_TINY;
  337. C = b + a / C;
  338. if (C < KF_TINY) C = KF_TINY;
  339. D = 1. / D;
  340. d = C * D;
  341. f *= d;
  342. if (fabs(d - 1.) < KF_GAMMA_EPS) break;
  343. }
  344. return exp(s * log(z) - z - kf_lgamma(s) - log(f));
  345. }
  346. double kf_gammap(double s, double z)
  347. {
  348. return z <= 1. || z < s? _kf_gammap(s, z) : 1. - _kf_gammaq(s, z);
  349. }
  350. double kf_gammaq(double s, double z)
  351. {
  352. return z <= 1. || z < s? 1. - _kf_gammap(s, z) : _kf_gammaq(s, z);
  353. }
  354. /* Regularized incomplete beta function. The method is taken from
  355. * Numerical Recipe in C, 2nd edition, section 6.4. The following web
  356. * page calculates the incomplete beta function, which equals
  357. * kf_betai(a,b,x) * gamma(a) * gamma(b) / gamma(a+b):
  358. *
  359. * http://www.danielsoper.com/statcalc/calc36.aspx
  360. */
  361. static double kf_betai_aux(double a, double b, double x)
  362. {
  363. double C, D, f;
  364. int j;
  365. if (x == 0.) return 0.;
  366. if (x == 1.) return 1.;
  367. f = 1.; C = f; D = 0.;
  368. // Modified Lentz's algorithm for computing continued fraction
  369. for (j = 1; j < 200; ++j) {
  370. double aa, d;
  371. int m = j>>1;
  372. aa = (j&1)? -(a + m) * (a + b + m) * x / ((a + 2*m) * (a + 2*m + 1))
  373. : m * (b - m) * x / ((a + 2*m - 1) * (a + 2*m));
  374. D = 1. + aa * D;
  375. if (D < KF_TINY) D = KF_TINY;
  376. C = 1. + aa / C;
  377. if (C < KF_TINY) C = KF_TINY;
  378. D = 1. / D;
  379. d = C * D;
  380. f *= d;
  381. if (fabs(d - 1.) < KF_GAMMA_EPS) break;
  382. }
  383. return exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b) + a * log(x) + b * log(1.-x)) / a / f;
  384. }
  385. double kf_betai(double a, double b, double x)
  386. {
  387. return x < (a + 1.) / (a + b + 2.)? kf_betai_aux(a, b, x) : 1. - kf_betai_aux(b, a, 1. - x);
  388. }
  389. /******************
  390. *** Statistics ***
  391. ******************/
  392. double km_ks_dist(int na, const double a[], int nb, const double b[]) // a[] and b[] MUST BE sorted
  393. {
  394. int ia = 0, ib = 0;
  395. double fa = 0, fb = 0, sup = 0, na1 = 1. / na, nb1 = 1. / nb;
  396. while (ia < na || ib < nb) {
  397. if (ia == na) fb += nb1, ++ib;
  398. else if (ib == nb) fa += na1, ++ia;
  399. else if (a[ia] < b[ib]) fa += na1, ++ia;
  400. else if (a[ia] > b[ib]) fb += nb1, ++ib;
  401. else fa += na1, fb += nb1, ++ia, ++ib;
  402. if (sup < fabs(fa - fb)) sup = fabs(fa - fb);
  403. }
  404. return sup;
  405. }
  406. #ifdef KF_MAIN
  407. #include <stdio.h>
  408. #include "ksort.h"
  409. KSORT_INIT_GENERIC(double)
  410. int main(int argc, char *argv[])
  411. {
  412. double x = 5.5, y = 3;
  413. double a, b;
  414. double xx[] = {0.22, -0.87, -2.39, -1.79, 0.37, -1.54, 1.28, -0.31, -0.74, 1.72, 0.38, -0.17, -0.62, -1.10, 0.30, 0.15, 2.30, 0.19, -0.50, -0.09};
  415. double yy[] = {-5.13, -2.19, -2.43, -3.83, 0.50, -3.25, 4.32, 1.63, 5.18, -0.43, 7.11, 4.87, -3.10, -5.81, 3.76, 6.31, 2.58, 0.07, 5.76, 3.50};
  416. ks_introsort(double, 20, xx); ks_introsort(double, 20, yy);
  417. printf("K-S distance: %f\n", km_ks_dist(20, xx, 20, yy));
  418. printf("erfc(%lg): %lg, %lg\n", x, erfc(x), kf_erfc(x));
  419. printf("upper-gamma(%lg,%lg): %lg\n", x, y, kf_gammaq(y, x)*tgamma(y));
  420. a = 2; b = 2; x = 0.5;
  421. printf("incomplete-beta(%lg,%lg,%lg): %lg\n", a, b, x, kf_betai(a, b, x) / exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b)));
  422. return 0;
  423. }
  424. #endif